Solution to Homework Assignment No. 3

1. (a) Let \boldsymbol{V}_{a} be the subspcae whose vectors have equal components; then $\boldsymbol{V}_{a}=$ $\left\{\left(v_{1}, v_{1}, v_{1}, v_{1}\right): v_{1} \in \mathcal{R}\right\}$. Since all vectors in \boldsymbol{V}_{a} have equal components, we can use $(1,1,1,1)$ to span the subspace \boldsymbol{V}_{a}. Therefore, a basis can be given by

$$
(1,1,1,1) .
$$

(b) Let \boldsymbol{V}_{b} be the subspace that all vectors in \boldsymbol{V}_{b} whose components add to zero; then $\boldsymbol{V}_{b}=\{(a, b, c, d): a+b+c+d=0, a, b, c, d \in \mathcal{R}\}$. And we can obtain

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0
$$

Then we have to find the nullspace of [$\left.\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$, and we can observe that columns 2,3 and 4 are free columns. Thus the special solutions are given by

$$
\begin{aligned}
& (a, b, c, d)=(-1,1,0,0) \\
& (a, b, c, d)=(-1,0,1,0) \\
& (a, b, c, d)=(-1,0,0,1) .
\end{aligned}
$$

Since the special solutions obtained are independent and span the nullspace, they form a basis. Therefore, we have a basis:

$$
(-1,1,0,0),(-1,0,1,0),(-1,0,0,1)
$$

(c) Let \boldsymbol{V}_{c} be the subspace whose vectors are perpendicular to ($1,1,0,0$) and $(1,0,1,1)$, i.e.,

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where $(a, b, c, d) \in \boldsymbol{V}_{c}$, and $a, b, c, d \in \mathcal{R}$. Then we perform Gaussian elimination to find the reduced row echelon form:

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1
\end{array}\right] } & \Longrightarrow\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & -1 & 1 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

Thus we have two pivots and two free variables, and we obtain

$$
\left\{\begin{array}{l}
a=-c-d \\
b=c+d
\end{array}\right.
$$

Substitute $(c, d)=(1,0)$, and $(c, d)=(0,1)$ into the equations above, and we can obtain the special solutions:

$$
\begin{aligned}
& (a, b, c, d)=(-1,1,1,0) \\
& (a, b, c, d)=(-1,1,0,1) .
\end{aligned}
$$

Therefore, a basis can be given by

$$
(-1,1,1,0),(-1,1,0,1) .
$$

(d) We know that $\boldsymbol{I}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$. By the definition of the column space, we have

$$
\boldsymbol{C}(\boldsymbol{I})=\left\{x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]: x_{1}, x_{2}, x_{3}, x_{4} \in \mathcal{R}\right\}
$$

Therefore, a basis is given by

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

To find the nullspace of \boldsymbol{I}, since $\boldsymbol{I} \boldsymbol{x}=\boldsymbol{x}$ for every vector \boldsymbol{x}, we have $\boldsymbol{x}=\mathbf{0}$. Therefore, a basis for $\boldsymbol{N}(\boldsymbol{I})$ is the empty set.
2. To find a basis for \boldsymbol{S}, we have

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0
$$

And we can observe that b, c, d are free variables. Therefore, we have special solutions

$$
(0,1,0,0),(-1,0,1,0),(-1,0,0,1)
$$

which form a basis for \boldsymbol{S}. To find a basis for \boldsymbol{T}, we have

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

We have two pivots and two free variables, and the special solutions are

$$
(-1,1,0,0),(0,0,2,1)
$$

which form a basis for \boldsymbol{T}. To find a basis for $\boldsymbol{S} \cap \boldsymbol{T}$, we have

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Perform Gaussian elimination, and we can obtain:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2
\end{array}\right] } & \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -2
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -2
\end{array}\right]
\end{aligned}
$$

Since we have three pivots and one free variable, the special solution is

$$
(-3,3,2,1) .
$$

which is a basis for $\boldsymbol{S} \cap \boldsymbol{T}$. Therefore, the dimension of $\boldsymbol{S} \cap \boldsymbol{T}$ is 1 .
3.

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
6 & 1 & 0 \\
9 & 8 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right]=\boldsymbol{L} \boldsymbol{U} .
$$

(a) Let $\boldsymbol{A}=\left[\begin{array}{l}\boldsymbol{a}_{r_{1}} \\ \boldsymbol{a}_{r_{2}} \\ \boldsymbol{a}_{r_{3}}\end{array}\right]$ where $\boldsymbol{a}_{r_{1}}, \boldsymbol{a}_{r_{2}}, \boldsymbol{a}_{r_{3}}$ are row vectors of \boldsymbol{A}. Then we can have

$$
\begin{aligned}
& \boldsymbol{a}_{r_{1}}=1 \cdot\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right) \\
& \boldsymbol{a}_{r_{2}} \\
& \boldsymbol{a}_{2} \\
& \boldsymbol{a}_{r_{3}}
\end{aligned}=9 \cdot\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)+1 \cdot\left(\begin{array}{lllll}
1 & 2 & 3 & 4
\end{array}\right)+8 \cdot\left(\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right)+1 \cdot\left(\begin{array}{llll}
0 & 1 & 1
\end{array}\right)
$$

and also observe that the row space is

$$
\boldsymbol{C}\left(\boldsymbol{A}^{T}\right)=\left\{a\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)+b\left(\begin{array}{llll}
0 & 1 & 2
\end{array}\right)+c\left(\begin{array}{llll}
0 & 1 & 2
\end{array}\right): a, b, c \in \mathcal{R}\right\} .
$$

Since (1 2334), (01223), and ($\left.001 \begin{array}{ll}0 & 1\end{array}\right)$ are independent, a basis for $\boldsymbol{C}\left(\boldsymbol{A}^{T}\right)$ can be given by

$$
(1234),(0123),(0012) .
$$

(b) Let $\boldsymbol{A}=\left[\boldsymbol{a}_{c_{1}} \boldsymbol{a}_{c_{2}} \boldsymbol{a}_{c_{3}} \boldsymbol{a}_{c_{4}}\right]$ where $\boldsymbol{a}_{c_{1}}, \boldsymbol{a}_{c_{2}}, \boldsymbol{a}_{c_{3}}$ and $\boldsymbol{a}_{c_{4}}$ are column vectors of
\boldsymbol{A}. Then we can have

$$
\begin{aligned}
& \boldsymbol{a}_{c_{1}}=1 \cdot\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right]+0 \cdot\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right]+0 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \boldsymbol{a}_{c_{2}}=2 \cdot\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right]+1 \cdot\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right]+0 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \boldsymbol{a}_{c_{3}}=3 \cdot\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right]+2 \cdot\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right]+1 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& \boldsymbol{a}_{c_{4}}=4 \cdot\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right]+3 \cdot\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right]+2 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

and we can observe that the column space is

$$
\boldsymbol{C}(\boldsymbol{A})=\left\{a\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]: a, b, c \in \mathcal{R}\right\} .
$$

Since $\left[\begin{array}{l}1 \\ 6 \\ 9\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 8\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are independent, a basis for $\boldsymbol{C}(\boldsymbol{A})$ can be given by

$$
\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
8
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

(c) To find the nullspace of \boldsymbol{A}, we transform the upper-triangular matrix \boldsymbol{U} to the reduced row echelon form \boldsymbol{R} as follows:

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2
\end{array}\right] } & \Longrightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Thus we can find the special solution:

$$
\boldsymbol{x}=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
1
\end{array}\right]
$$

Hence a basis for $\boldsymbol{N}(\boldsymbol{A})$ can by given by

$$
\left[\begin{array}{c}
0 \\
1 \\
-2 \\
1
\end{array}\right] .
$$

(d) Note that \boldsymbol{A} is a 3×4 matrix. Since the dimension of $\boldsymbol{C}(\boldsymbol{A})$ is 3, the dimension of the left nullspace $\boldsymbol{N}\left(\boldsymbol{A}^{T}\right)$ is $3-3=0$. Hence $\boldsymbol{N}\left(\boldsymbol{A}^{T}\right)=\{\mathbf{0}\}$, and a basis for $\boldsymbol{N}\left(\boldsymbol{A}^{T}\right)$ is the empty set.
4. (a) To find a basis for the row space of \boldsymbol{B} :

By observation, we can find that the rows are replications of rows 1 and 2. Therefore, we can obtain

$$
\boldsymbol{C}\left(\boldsymbol{B}^{T}\right)=\{x(10101010)+y(01010101): x, y \in \mathcal{R}\}
$$

and a basis for $\boldsymbol{C}\left(\boldsymbol{B}^{T}\right)$ can be given by

$$
(10101010),(01010101) \text {. }
$$

Therefore, the rank of \boldsymbol{B} is 2 .
(b) To find a basis for the left nullspace of \boldsymbol{B} :

Since \boldsymbol{B} is symmetric, $\boldsymbol{B}^{T}=\boldsymbol{B}$, and rows 3 to 8 are replications of rows 1 and 2 , we can have

$$
\left[\begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where $\boldsymbol{x}=\left[\begin{array}{lllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7}\end{array} x_{8}\right]^{T}$ which satisfies $\boldsymbol{B}^{T} \boldsymbol{x}=\mathbf{0}$. Then we obtain

$$
\left\{\begin{array}{l}
x_{1}=-x_{3}-x_{5}-x_{7} \\
x_{2}=-x_{4}-x_{6}-x_{8}
\end{array}\right.
$$

Therefore, a basis for $\boldsymbol{N}\left(\boldsymbol{B}^{T}\right)$ can be obtained from the special solutions as given by

$$
\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

(c) To find a basis for the row space of \boldsymbol{C} :

Since rows 7 and 8 are identical to rows 1 and 2, respectively, and the numbers r, n, b, q, k, p are all different, we can find that the row space of \boldsymbol{C} is

$$
\begin{aligned}
& \boldsymbol{C}\left(\boldsymbol{C}^{T}\right)=\{a[r n b q k b n r]+b[p p p p p p p]: a, b \in \mathcal{R}\} \\
& =\left\{a[r n b q k b n r]+b^{\prime}[111111111]: a, b^{\prime} \in \mathcal{R}\right\} .
\end{aligned}
$$

Therefore, a basis for $\boldsymbol{C}\left(\boldsymbol{C}^{T}\right)$ can be given by

The rank of \boldsymbol{C} is 2 . (Note that we assume $p \neq 0$.)
(d) To find a basis for the left nullspace of \boldsymbol{C} :

Since rows $6,7,8$ of \boldsymbol{C}^{T} are identical to rows $3,2,1$, respectively, we only have to consider rows 1 to 5 in \boldsymbol{C}^{T}. Let $\boldsymbol{y}=\left[\begin{array}{lllllll}y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7}\end{array} y_{8}\right]^{T}$ be a vector in the left nullspace of \boldsymbol{C}, i.e., $\boldsymbol{C}^{T} \boldsymbol{y}=\mathbf{0}$. Since rows 3 to 5 can be reduced to the all-zero row and the numbers r, n, b, q, k, p are all different, we can have

$$
\begin{gathered}
{\left[\begin{array}{llllllll}
r & p & 0 & 0 & 0 & 0 & p & r \\
n & p & 0 & 0 & 0 & 0 & p & n
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\Longrightarrow\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

Then a basis for $\boldsymbol{N}\left(\boldsymbol{C}^{T}\right)$ can be obtained from the special solutions as given by

$$
\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

(e) To find a basis for the nullspace of \boldsymbol{C} :

Since rows 7,8 of \boldsymbol{C} are identical to rows 2 , 1, respectively, and rows 3 to 6 are all-zero rows, we only have to consider rows 1 and 2 in \boldsymbol{C}. Let $\boldsymbol{z}=\left[\begin{array}{llll}z_{1} & z_{2} & z_{3} & z_{4} \\ z_{5} & z_{6} & z_{7} & z_{8}\end{array}\right]^{T}$ be a vector in the nullspace of \boldsymbol{C}, i.e., $\boldsymbol{C} \boldsymbol{z}=\mathbf{0}$.

Then we can have

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
r & n & b & q & k & b & n & r \\
p & p & p & p & p & p & p & p
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5} \\
z_{6} \\
z_{7} \\
z_{8}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \Longrightarrow \frac{1}{r-n}\left[\begin{array}{cccccccc}
r-n & 0 & b-n & q-n & k-n & b-n & 0 & r-n \\
0 & r-n & r-b & r-q & r-k & r-b & r-n & 0
\end{array}\right] \\
& {\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5} \\
z_{6} \\
z_{7} \\
z_{8}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Note that we assume $r \neq 0$ and $p \neq 0$. Then a basis can be obtained from the special solutions as given by

$$
\left[\begin{array}{c}
n-b \\
b-r \\
r-n \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
n-q \\
q-r \\
0 \\
r-n \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
n-k \\
k-r \\
0 \\
0 \\
r-n \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
n-b \\
b-r \\
0 \\
0 \\
0 \\
r-n \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

5. We can have

$$
\boldsymbol{C}\left(\boldsymbol{A}^{T}\right)=\{(a,-a): a \in \mathcal{R}\}
$$

and

$$
\boldsymbol{N}(\boldsymbol{A})=\{(b, b): b \in \mathcal{R}\} .
$$

Therefore,

$$
\boldsymbol{x}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}
$$

where

$$
\boldsymbol{x}_{r}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \boldsymbol{x}_{n}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

For this example, Figure 4.3 can be redrawn as

6. (a) Since the inner product of the zero vector and any other vector is always zero, we know that $\boldsymbol{S}^{\perp}=\mathcal{R}^{3}$.
(b) Let a vector in \boldsymbol{S}^{\perp} be $\left(x_{1}, x_{2}, x_{3}\right)$, where $x_{1}, x_{2}, x_{3} \in \mathcal{R}$. Then we have

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right) \cdot(1,1,1)=x_{1}+x_{2}+x_{3}=0 \\
\Longrightarrow \quad & x_{3}=-x_{1}-x_{2}
\end{aligned}
$$

Therefore, the subspace \boldsymbol{S}^{\perp} is

$$
\boldsymbol{S}^{\perp}=\left\{x_{1}(1,0,-1)+x_{2}(0,1,-1): x_{1}, x_{2} \in \mathcal{R}\right\} .
$$

(c) Let a vector in \boldsymbol{S}^{\perp} be $\left(y_{1}, y_{2}, y_{3}\right)$, where $y_{1}, y_{2}, y_{3} \in \mathcal{R}$. Then we have

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(y_{1}, y_{2}, y_{3}\right) \cdot(1,1,1)=y_{1}+y_{2}+y_{3}=0 \\
\left(y_{1}, y_{2}, y_{3}\right) \cdot(1,1,-1)=y_{1}+y_{2}-y_{3}=0
\end{array}\right. \\
\Longrightarrow & \left\{\begin{array}{l}
y_{2}=-y_{1} \\
y_{3}=0
\end{array}\right.
\end{aligned}
$$

Therefore, the subspace \boldsymbol{S}^{\perp} is

$$
\boldsymbol{S}^{\perp}=\left\{y_{1}(1,-1,0): y_{1} \in \mathcal{R}\right\}
$$

and a basis is

$$
(1,-1,0) .
$$

7. We have

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The projection of $\boldsymbol{b}=(1,2,3,4)$ onto the column space of \boldsymbol{A} is then

$$
\boldsymbol{p}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right]
$$

The projection matrix \boldsymbol{P} is a 4×4 square matrix given by

$$
\boldsymbol{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

8. (a) We can find two vectors in the plane $x-y-2 z=0$ as

$$
\boldsymbol{v}_{1}=(1,1,0), \boldsymbol{v}_{2}=(2,0,1)
$$

Let

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Then

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right]
$$

Its inverse can be found as

$$
\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}=\frac{1}{6}\left[\begin{array}{cc}
5 & -2 \\
-2 & 2
\end{array}\right]
$$

Therefore, we can obtain the projection matrix as

$$
\begin{aligned}
\boldsymbol{P} & =\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \\
& =\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right] \frac{1}{6}\left[\begin{array}{cc}
5 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{ccc}
5 & 1 & 2 \\
1 & 5 & -2 \\
2 & -2 & 2
\end{array}\right] .
\end{aligned}
$$

(b) From the plane equation $x-y-2 z=0$, we know that

$$
\left[\begin{array}{lll}
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

We can then have $\boldsymbol{e}=\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right]$ which is perpendicular to the plane. Thus we obtain

$$
\boldsymbol{Q}=\frac{\boldsymbol{e} \boldsymbol{e}^{T}}{\boldsymbol{e}^{T} \boldsymbol{e}}=\frac{\left[\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right]}{1+1+4}=\frac{1}{6}\left[\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right]
$$

Therefore, the projection matrix is given by

$$
\boldsymbol{P}=\boldsymbol{I}-\boldsymbol{Q}=\frac{1}{6}\left[\begin{array}{ccc}
5 & 1 & 2 \\
1 & 5 & -2 \\
2 & -2 & 2
\end{array}\right]
$$

which is identical to the result in (a).

