
EE 2030 Linear Algebra Spring 2010

Solution to Homework Assignment No. 3

1. (a) Let V a be the subspcae whose vectors have equal components; then V a =
{(v1, v1, v1, v1) : v1 ∈ R}. Since all vectors in V a have equal components, we
can use (1, 1, 1, 1) to span the subspace V a. Therefore, a basis can be given
by

(1, 1, 1, 1) .

(b) Let V b be the subspace that all vectors in V b whose components add to zero;
then V b = {(a, b, c, d) : a+ b+ c+ d = 0, a, b, c, d ∈ R}. And we can obtain

[
1 1 1 1

] 
a
b
c
d

 = 0.

Then we have to find the nullspace of
[
1 1 1 1

]
, and we can observe that

columns 2, 3 and 4 are free columns. Thus the special solutions are given by

(a, b, c, d) = (−1, 1, 0, 0)

(a, b, c, d) = (−1, 0, 1, 0)

(a, b, c, d) = (−1, 0, 0, 1) .

Since the special solutions obtained are independent and span the nullspace,
they form a basis. Therefore, we have a basis:

(−1, 1, 0, 0) , (−1, 0, 1, 0) , (−1, 0, 0, 1) .

(c) Let V c be the subspace whose vectors are perpendicular to (1, 1, 0, 0) and
(1, 0, 1, 1), i.e., [

1 1 0 0
1 0 1 1

]
a
b
c
d

 =

[
0
0

]

where (a, b, c, d) ∈ V c, and a, b, c, d ∈ R. Then we perform Gaussian elimina-
tion to find the reduced row echelon form:[

1 1 0 0
1 0 1 1

]
=⇒

[
1 1 0 0
0 −1 1 1

]
=⇒

[
1 0 1 1
0 1 −1 −1

]
Thus we have two pivots and two free variables, and we obtain{

a = −c− d

b = c+ d.



Substitute (c, d) = (1, 0) , and (c, d) = (0, 1) into the equations above, and we
can obtain the special solutions:

(a, b, c, d) = (−1, 1, 1, 0)

(a, b, c, d) = (−1, 1, 0, 1) .

Therefore, a basis can be given by

(−1, 1, 1, 0) , (−1, 1, 0, 1) .

(d) We know that I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . By the definition of the column space,

we have

C(I) =

x1


1
0
0
0

+ x2


0
1
0
0

+ x3


0
0
1
0

+ x4


0
0
0
1

 : x1, x2, x3, x4 ∈ R

 .

Therefore, a basis is given by
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 .

To find the nullspace of I, since Ix = x for every vector x, we have x = 0.
Therefore, a basis for N(I) is the empty set.

2. To find a basis for S, we have

[
1 0 1 1

] 
a
b
c
d

 = 0.

And we can observe that b, c, d are free variables. Therefore, we have special
solutions

(0, 1, 0, 0) , (−1, 0, 1, 0) , (−1, 0, 0, 1)

which form a basis for S. To find a basis for T , we have

[
1 1 0 0
0 0 1 −2

]
a
b
c
d

 =

[
0
0

]
.

We have two pivots and two free variables, and the special solutions are

(−1, 1, 0, 0) , (0, 0, 2, 1)
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which form a basis for T . To find a basis for S ∩ T , we have

 1 0 1 1
1 1 0 0
0 0 1 −2




a
b
c
d

 =

 0
0
0

 .

Perform Gaussian elimination, and we can obtain: 1 0 1 1
1 1 0 0
0 0 1 −2

 =⇒

 1 0 0 3
0 1 −1 −1
0 0 1 −2


=⇒

 1 0 0 3
0 1 0 −3
0 0 1 −2


Since we have three pivots and one free variable, the special solution is

(−3, 3, 2, 1) .

which is a basis for S ∩ T . Therefore, the dimension of S ∩ T is 1.

3.

A =

 1 0 0
6 1 0
9 8 1

 1 2 3 4
0 1 2 3
0 0 1 2

 = LU .

(a) Let A =

 ar1

ar2

ar3

 where ar1 ,ar2 ,ar3 are row vectors of A. Then we can have

ar1 = 1 · (1 2 3 4)

ar2 = 6 · (1 2 3 4) + 1 · (0 1 2 3)

ar3 = 9 · (1 2 3 4) + 8 · (0 1 2 3) + 1 · (0 0 1 2)

and also observe that the row space is

C(AT ) = {a (1 2 3 4) + b (0 1 2 3) + c (0 0 1 2) : a, b, c ∈ R}.

Since (1 2 3 4), (0 1 2 3), and (0 0 1 2) are independent, a basis for C(AT )
can be given by

(1 2 3 4) , (0 1 2 3) , (0 0 1 2) .

(b) Let A = [ac1 ac2 ac3 ac4 ] where ac1 , ac2 , ac3 and ac4 are column vectors of
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A. Then we can have

ac1 = 1 ·

 1
6
9

+ 0 ·

 0
1
8

+ 0 ·

 0
0
1


ac2 = 2 ·

 1
6
9

+ 1 ·

 0
1
8

+ 0 ·

 0
0
1


ac3 = 3 ·

 1
6
9

+ 2 ·

 0
1
8

+ 1 ·

 0
0
1


ac4 = 4 ·

 1
6
9

+ 3 ·

 0
1
8

+ 2 ·

 0
0
1


and we can observe that the column space is

C(A) =

a

 1
6
9

+ b

 0
1
8

+ c

 0
0
1

 : a, b, c ∈ R

 .

Since

 1
6
9

,
 0

1
8

, and
 0

0
1

 are independent, a basis for C(A) can be

given by  1
6
9

 ,

 0
1
8

 ,

 0
0
1

 .

(c) To find the nullspace of A, we transform the upper-triangular matrix U to
the reduced row echelon form R as follows: 1 2 3 4

0 1 2 3
0 0 1 2

 =⇒

 1 2 0 −2
0 1 0 −1
0 0 1 2


=⇒

 1 0 0 0
0 1 0 −1
0 0 1 2


Thus we can find the special solution:

x =


0
1
−2
1

 .

Hence a basis for N (A) can by given by
0
1
−2
1

 .
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(d) Note thatA is a 3×4 matrix. Since the dimension ofC(A) is 3, the dimension
of the left nullspace N(AT ) is 3− 3 = 0. Hence N (AT ) = {0}, and a basis
for N (AT ) is the empty set.

4. (a) To find a basis for the row space of B:
By observation, we can find that the rows are replications of rows 1 and 2.
Therefore, we can obtain

C(BT ) = {x (1 0 1 0 1 0 1 0) + y (0 1 0 1 0 1 0 1) : x, y ∈ R}

and a basis for C(BT ) can be given by

(1 0 1 0 1 0 1 0) , (0 1 0 1 0 1 0 1) .

Therefore, the rank of B is 2.

(b) To find a basis for the left nullspace of B:
Since B is symmetric, BT = B, and rows 3 to 8 are replications of rows 1
and 2, we can have

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]


x1

x2

x3

x4

x5

x6

x7

x8


=

[
0
0

]

where x = [x1 x2 x3 x4 x5 x6 x7 x8]
T which satisfies BTx = 0. Then we

obtain {
x1 = −x3 − x5 − x7

x2 = −x4 − x6 − x8.

Therefore, a basis for N (BT ) can be obtained from the special solutions as
given by 

−1
0
1
0
0
0
0
0


,



0
−1
0
1
0
0
0
0


,



−1
0
0
0
1
0
0
0


,



0
−1
0
0
0
1
0
0


,



−1
0
0
0
0
0
1
0


,



0
−1
0
0
0
0
0
1


.

(c) To find a basis for the row space of C:
Since rows 7 and 8 are identical to rows 1 and 2, respectively, and the numbers
r, n, b, q, k, p are all different, we can find that the row space of C is

C(CT ) = {a [r n b q k b n r] + b [p p p p p p p p] : a, b ∈ R}
= {a [r n b q k b n r] + b′ [1 1 1 1 1 1 1 1] : a, b′ ∈ R}.
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Therefore, a basis for C(CT ) can be given by

[r n b q k b n r] , [1 1 1 1 1 1 1 1] .

The rank of C is 2. (Note that we assume p ̸= 0.)

(d) To find a basis for the left nullspace of C:
Since rows 6, 7, 8 of CT are identical to rows 3, 2, 1, respectively, we only
have to consider rows 1 to 5 in CT . Let y = [y1 y2 y3 y4 y5 y6 y7 y8]

T be a
vector in the left nullspace of C, i.e., CTy = 0. Since rows 3 to 5 can be
reduced to the all-zero row and the numbers r, n, b, q, k, p are all different,
we can have

[
r p 0 0 0 0 p r
n p 0 0 0 0 p n

]


y1
y2
y3
y4
y5
y6
y7
y8


=

[
0
0

]

=⇒
[
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

]


y1
y2
y3
y4
y5
y6
y7
y8


=

[
0
0

]

Then a basis for N(CT ) can be obtained from the special solutions as given
by 

0
0
1
0
0
0
0
0


,



0
0
0
1
0
0
0
0


,



0
0
0
0
1
0
0
0


,



0
0
0
0
0
1
0
0


,



0
−1
0
0
0
0
1
0


,



−1
0
0
0
0
0
0
1


.

(e) To find a basis for the nullspace of C:
Since rows 7, 8 of C are identical to rows 2, 1, respectively, and rows 3
to 6 are all-zero rows, we only have to consider rows 1 and 2 in C. Let
z = [z1 z2 z3 z4 z5 z6 z7 z8]

T be a vector in the nullspace of C, i.e., Cz = 0.
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Then we can have

[
r n b q k b n r
p p p p p p p p

]


z1
z2
z3
z4
z5
z6
z7
z8


=

[
0
0

]

=⇒ 1

r − n

[
r − n 0 b− n q − n k − n b− n 0 r − n
0 r − n r − b r − q r − k r − b r − n 0

]


z1
z2
z3
z4
z5
z6
z7
z8


=

[
0
0

]

Note that we assume r ̸= 0 and p ̸= 0. Then a basis can be obtained from
the special solutions as given by

n− b
b− r
r − n
0
0
0
0
0


,



n− q
q − r
0

r − n
0
0
0
0


,



n− k
k − r
0
0

r − n
0
0
0


,



n− b
b− r
0
0
0

r − n
0
0


,



0
−1
0
0
0
0
1
0


,



−1
0
0
0
0
0
0
1


.

5. We can have
C(AT ) = {(a, −a) : a ∈ R}

and
N (A) = {(b, b) : b ∈ R}.

Therefore,

x =

[
2
0

]
=

[
1
−1

]
+

[
1
1

]
= xr + xn

where

xr =

[
1
−1

]
, xn =

[
1
1

]
.

For this example, Figure 4.3 can be redrawn as
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6. (a) Since the inner product of the zero vector and any other vector is always zero,
we know that S⊥ = R3.

(b) Let a vector in S⊥ be (x1, x2, x3), where x1, x2, x3 ∈ R. Then we have

(x1, x2, x3) · (1, 1, 1) = x1 + x2 + x3 = 0

=⇒ x3 = −x1 − x2

Therefore, the subspace S⊥ is

S⊥ = {x1 (1, 0,−1) + x2 (0, 1,−1) : x1, x2 ∈ R}.

(c) Let a vector in S⊥ be (y1, y2, y3), where y1, y2, y3 ∈ R. Then we have{
(y1, y2, y3) · (1, 1, 1) = y1 + y2 + y3 = 0

(y1, y2, y3) · (1, 1,−1) = y1 + y2 − y3 = 0

=⇒

{
y2 = −y1

y3 = 0

Therefore, the subspace S⊥ is

S⊥ = {y1 (1,−1, 0) : y1 ∈ R}

and a basis is
(1,−1, 0) .

7. We have

A =


1 0 0
0 1 0
0 0 1
0 0 0


The projection of b = (1, 2, 3, 4) onto the column space of A is then

p =


1
2
3
0

 .
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The projection matrix P is a 4× 4 square matrix given by

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

8. (a) We can find two vectors in the plane x− y − 2z = 0 as

v1 = (1, 1, 0) , v2 = (2, 0, 1) .

Let

A =

 1 2
1 0
0 1

 .

Then

ATA =

[
1 1 0
2 0 1

] 1 2
1 0
0 1

 =

[
2 2
2 5

]
.

Its inverse can be found as(
ATA

)−1
=

1

6

[
5 −2
−2 2

]
.

Therefore, we can obtain the projection matrix as

P = A
(
ATA

)−1
AT

=

 1 2
1 0
0 1

 1

6

[
5 −2
−2 2

] [
1 1 0
2 0 1

]

=
1

6

 5 1 2
1 5 −2
2 −2 2

 .

(b) From the plane equation x− y − 2z = 0, we know that

[
1 −1 −2

]  x
y
z

 = 0.

We can then have e =

 1
−1
−2

 which is perpendicular to the plane. Thus we

obtain

Q =
eeT

eTe
=

 1 −1 −2
−1 1 2
−2 2 4


1 + 1 + 4

=
1

6

 1 −1 −2
−1 1 2
−2 2 4

 .
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Therefore, the projection matrix is given by

P = I −Q =
1

6

 5 1 2
1 5 −2
2 −2 2


which is identical to the result in (a).
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